Source code for ruptures.costs.costl2

r"""
.. _sec-costl2:

Least squared deviation
====================================================================================================

Description
----------------------------------------------------------------------------------------------------

This cost function detects mean-shifts in a signal.
Formally, for a signal :math:`\{y_t\}_t` on an interval :math:`I`,

    .. math:: c(y_{I}) = \sum_{t\in I} \|y_t - \bar{y}\|_2^2

where :math:`\bar{y}` is the mean of :math:`\{y_t\}_{t\in I}`.

Usage
----------------------------------------------------------------------------------------------------

Start with the usual imports and create a signal.

.. code-block:: python

    import numpy as np
    import matplotlib.pylab as plt
    import ruptures as rpt
    # creation of data
    n, dim = 500, 3  # number of samples, dimension
    n_bkps, sigma = 3, 5  # number of change points, noise standart deviation
    signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)

Then create a :class:`CostL2` instance and print the cost of the sub-signal :code:`signal[50:150]`.

.. code-block:: python

    c = rpt.costs.CostL2().fit(signal)
    print(c.error(50, 150))

You can also compute the sum of costs for a given list of change points.

.. code-block:: python

    print(c.sum_of_costs(bkps))
    print(c.sum_of_costs([10, 100, 200, 250, n]))


In order to use this cost class in a change point detection algorithm (inheriting from :class:`BaseEstimator`), either pass a :class:`CostL2` instance (through the argument ``'custom_cost'``) or set :code:`model="l2"`.

.. code-block:: python

    c = rpt.costs.CostL2(); algo = rpt.Dynp(custom_cost=c)
    # is equivalent to
    algo = rpt.Dynp(model="l2")


Code explanation
----------------------------------------------------------------------------------------------------

.. autoclass:: ruptures.costs.CostL2
    :members:
    :special-members: __init__

"""
from ruptures.costs import NotEnoughPoints

from ruptures.base import BaseCost


[docs]class CostL2(BaseCost): r""" Least squared deviation. """ model = "l2"
[docs] def __init__(self): self.signal = None self.min_size = 2
[docs] def fit(self, signal): """Set parameters of the instance. Args: signal (array): signal. Shape (n_samples,) or (n_samples, n_features) Returns: self """ if signal.ndim == 1: self.signal = signal.reshape(-1, 1) else: self.signal = signal return self
[docs] def error(self, start, end): """Return the approximation cost on the segment [start:end]. Args: start (int): start of the segment end (int): end of the segment Returns: float: segment cost Raises: NotEnoughPoints: when the segment is too short (less than ``'min_size'`` samples). """ if end - start < self.min_size: raise NotEnoughPoints return self.signal[start:end].var(axis=0).sum() * (end - start)